导数压轴题之隐零点问答题专辑含答案解析纯word版
(2)证明:f(x)存在唯一极大值点xo,0<f(x_{0})< \frac {1}{4}.【解答】(1)解:f(x)=e^{x}(ae^{x}-a-x)\geqslant 0,因为e^{x}>0,所以ae^{x}-a-x \ge 0恒成立,即a(e^{x}-1)\ge x恒成立,x=0时,显然成立,x>0时,e^{x}-1>0,故只需a \ge \frac {x}{e^{x}-1}在(0,+\infty)恒成立,令h(x)= \frac {x}{e^{x}-1},(x>0),h'(x)= \frac {(1-x)e^{x}-1}{(e^{x}-1)^{2}}<0,故h(x)在(0,+\infty)递减,而\lim _{x \rightarrow 0} \frac {x}{x-1} \lim _{x \rightarrow 0} \frac {1}{x}=1,故a \ge 1,x<0时,e^{x}-1<0,故只需a \le \frac {x}{e^{x}-1}-在(- \infty ,0)恒成立,令g(x)= \frac {x}{e^{x}-1},(x<0),g'(x)= \frac {(1-x)e^{x}-1}{(e^{x}-1)^{2}}>0,故h(x)在(- \infty ,0)递增,血\lim _{x \rightarrow 0} \frac {x}{x-1}= \lim _{x \rightarrow 0} \frac {1}{x}=1,故a \le 1,综上:a=1;(2)证明:由(1)f(x)=e^{x}(e^{x}-x-1),故f'(x)=e^{x}(2e^{x}-x-2),令h(x)=2e^{x}-x-2,(x)=2e^{x}-1,所以h(x)在(- \infty , \ln \frac {1}{2})单调递减,在(\ln \frac {1}{2},+\infty)单调递增,h(0)=0,=0,h(\ln \frac {1}{2})=2e \ln \frac {1}{2}- \ln \frac {1}{2}-2= \ln 2-1<0,h(-2)=2e-2-(-2)2= \frac {2}{e^{2}}>0,\because h(-2)h(\ln \frac {1}{2})<0由零点存在定理及h(x)的单调性知,方程h(x)=0在