新人教版八年级数学上册知识点总结
知识框架: 知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.(钝角三角形三条高的交点在三角形外,直角三角形的三条高的交点在三角形上,锐角三角形的三条高在三角形内)4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.(三条中线的交点叫重心)5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(三角形三条角平分线的交点到三边距离相等)6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性. 知识框架: 知识概念:1.基本定义:全等形:能够完全重合的两个图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点:全等三角形中互相重合的顶点叫做对应顶点.对应边:全等三角形中互相重合的边叫做对应边.对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:边边边(SSS):三边对应相等的两个三角形全等.边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.角边角(ASA):两角和它们的夹边对应相等的两个三角形全等. 知识框架: 知识概念:1.基本概念:轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:对称的性质:不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线. 等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:等腰三角形的判定:有两条边相等的三角形是等腰三角形.如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).等边三角形的判定:三条边都相等的三角形是等边三角形.三个角都相等的三角形是等边三角形.有一个角是60°的等腰三角形是等边三角形.4.基本方法:做已知直线的垂线:做已知线段的垂直平分线:作对称轴:连接两个对应点,作所连线段的垂直平分线.作已知图形关于某直线的对称图形:在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章整式的乘除与分解因式 知识框架:整式乘法乘法法则整式除法因式分解 知识概念:1.基本运算:等边三同底数幂的乘法:amanamn角形的幂的乘方:amamnnn积的乘方:abanbn2.整式的乘法:单项式单项式:系数系数,同字母同字母,不同字母为积的因式.单项式多项式:用单项式乘以多项式的每个项后相加.多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:平方差公式:ababa2b222完全平方公式:aba22abb2;aba22abb24.整式的除法:同底数幂的除法:amanamn单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.多项式单项式:用多项式每个项除以单项式后相加.多项式多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解. 知识框架: