考研数学大纲 考研数学大纲是指由教育部考试中心组织编写,高等教育出版社独家出版的、规定当年全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等权威政策指导性考研用书。它既是当年全国硕士研究生入学考试命题的唯一依据,也是考生复习备考必不可少的工具书。包括政治理论、英语、俄语、日语、数学、法律硕士、西医综合、中医综合、教育学、心理学、历史学等分册,每本书后均附有的试卷、参考答案及评分标准。 数学一大纲 考试科目 高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 1、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 2、答题方式 答题方式为闭卷、笔试. 3、试卷内容结构 高等数学60% 线性代数20% 概率论与数理统计20% 4、试卷题型结构 试卷题型结构为: 单选题10小题,每题5分,共50分 填空题6小题,每题5分,共30分 解答题(包括证明题)6小题,共70分 考试内容之高等数学 函数、极限、连续 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的 函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则. 7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 一元函数微分学 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法. 7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用. 8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 一元函数积分学 考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式. 5.理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值. 向量代数和空间解析几何 考试要求 1.理解空间直角坐标系,理解向量的概念及其表示. 2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件. 3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法. 4.掌握平面方程和直线方程及其求法. 5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念. 8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程. 多元函数微分学 考试要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质. 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性. 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,会求多元隐函数的偏导数. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程. 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题. 多元函数积分学 考试要求 1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理. 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标). 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法. 5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数. 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分. 7.了解散度与旋度的概念,并会计算. 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值. 无穷级数 考试要求 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件. 2.掌握几何级数与级数的收敛与发散的条件. 3.掌握正项级数收敛性的比较判别法、比值判别法、根值判别法,会用积分判别法. 4.掌握交错级数的莱布尼茨判别法. 5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念. 7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法. 8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和. 9.了解函数展开为泰勒级数的充分必要条件. 10.函数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数. 11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式. 常微分方程 考试要求 1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法. 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程. 4.会用降阶法解下列形式的微分方程:. 5.理解线性微分方程解的性质及解的结构. 6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程. 8.会解欧拉方程. 9.会用微分方程解决一些简单的应用问题. 考试内容之线性代数 行列式 考试内容: 行列式的概念和基本性质行列式按行(列)展开定理 考试要求: 1.了解行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 矩阵 考试内容: 矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵等价分块矩阵及其运算 考试要求: 1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质. 2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵. 4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法. 5.了解分块矩阵及其运算. 向量 考试内容: 向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间以及相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质 考试要求: 1.理解n维向量、向量的线性组合与线性表示的概念. 2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩. 4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组 的秩之间的关系. 5.了解n维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵. 7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法. 8.了解规范正交基、正交矩阵的概念以及它们的性质. 线性方程组 考试内容: 线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件解空间非齐次线性方程组的通解 考试要求 1.会用克莱姆法则. 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念. 5.掌握用初等行变换求解线性方程组的方法. 矩阵的特征值及特征向量 考试内容: 矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及相似对角矩阵 考试要求: 1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质. 二次型 考试内容: 二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性 考试要求: 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理. 2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法. 考试内容之概率与统计 随机事件和概率 考试内容: 随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求: 1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算. 2.掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式. 3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法. 随机变量及其分布 考试内容: 随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变 量函数的分布 考试要求: 1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率. 2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用. 3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为 5.会求随机变量函数的分布. 多维随机变量及其分布 考试内容 多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布 考试要求 1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质.理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率. 2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随

考研数学大纲相关资料
5.3万次浏览
1.1万人收藏
考研数学大纲

考研数学大纲

考研数学大纲是指由教育部考试中心组织编写,高等教育出版社独家出版的、规定当年全国硕士研究生入学考试相应科目的考试范围、考试要求、考试形式、试卷结构等权威政策指导性考研用书。它既是当年全国硕士研究生入学考试命题的唯一依据,也是考生复习备考必不可少的工具书。包括政治理论、英语、俄语、日语、数学、法律硕士、西医综合、中医综合、教育学、心理学、历史学等分册,每本书后均附有的试卷、参考答案及评分标准。数学一大纲考试科目高等数学、线性代数、概率论与数理统计考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.2、答题方式答题方式为闭卷、笔试.3、试卷内容结构高等数学60%线性代数20%概率论与数理统计20%4、试卷题型结构试卷题型结构为:单选题10小题,每题5分,共50分填空题6小题,每题5分,共30分解答题(包括证明题)6小题,共70分考试内容之高等数学函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建

考研数学大纲(2)

2022考研大纲—数学

2022 考研大纲数学新大纲还没出来,2022年的藏参考使用,预祝大家取得好成绩今天上午,教育部考试中心发布了2022年考研数学大纲,从卷种分类,到题型,题量,以及各科所占的分值比例,再到各局部的考试内容和考试要求,都和2022年考研数学大纲没有一点区别。要说到区别,唯一不同的是2022年考研数学大纲的附录局部是2022年和2022年的真题,而2022年考研数学大纲的附录局部是2022年和2022年的真题。2022年考研数学六纲明确规定,考试卷种分为数学一、数学二、数学三和次学数学,每张试卷分为单项选择题,填空题和解答题(包括证明题)三种题型,其中8个单项选择题每题4分,6个填空题每题4分,9个解答题(包括证明题)共94分,合计每张试卷总分值均是150分。这四个卷种除了数学二考察高等数学和线性代数,其余的还要考察概率论与数理统计。其中数学一、数学三、农学数学中高数(微积分)、线代、概率各科分值比例分别为56%,22%,22%;而数学二中高数和线代的分值比例为78%,22%,这样看来我们同学只要按照原方案有条不紊的进行复
2021考研数学大纲

2021考研数学大纲

理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F xP Xxx 的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p、几何分布、超几何分布、泊松(Poisson)分布()P 及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均勾分布(,)U a b、正态分布2(,)N 、指数分布及其应用,其中参数为(0) 的指数分布()E 的概率密度为e,0,()0,0.x xf xx 5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量

考研数学大纲(2)

2024数学考研大纲

2024数学考研大纲

2024考研的数学大纲

考试分析试卷题型结构:单项选择题小题,每小题分,分填空题小题,每小题分,分解答题小题,每小题约分, 12^{*}6 \approx 70 分试卷内容结构数学一:高等数学约(增大比例)线性代数约概率论与数理统计约数学二:高等数学约(增大比例)线性代数约数学三:微积分约(增大比例)线性代数约概率论与数理统计约考情变化注:考研数学从年起整体结构发生变化,具体变化如下:考研数学内容结构分值比例试卷题型结构分析:年的数学考纲明显提高了对高等数学的考察要求,毕竟高等数学是大学的数学基础;同时随着考研人数年年递增,通过提高选择题和填空题的分值占比,不仅可以减轻阅卷的工作量,也可以降低解答题阅卷的随机误差。所以,研友们在做填空题时一定要仔细认真,因为错一点就零分! 对基础知识,基础概念,基础计算要训练好。(三基:基础不牢,地动山摇) 培养独立思考,独立解题的习惯。(尤其锻炼选择题、填空题的方法和技巧) 锻炼做题速度,考场一共就三个小时,所以在平时要控制好时间。(建议前期用分训练,后期恢复分钟。类似赛跑训练课绑沙袋) 善于总结,对一系列类似题目,总结出来最合适的解法。(适合自己的才是最好的方法)

考研数学2022考试大纲

2024考研数学大纲

2024考研数学大纲

考试分析1.试卷题型结构:单项选择题10小题,每小题5分,10*5=50分填空题6小题,每小题5分,6*5=30分解答题6小题,每小题约12分,12*670分2.试卷内容结构数学一:高等数学约60%(增大比例)线性代数约20%概率论与数理统计约20%数学二:高等数学约80%(增大比例)线性代数约20%数学三:微积分约60%(增大比例)线性代数约20%概率论与数理统计约20%3.考情变化注:考研数学从2021年起整体结构发生变化,具体变化如下:考研数学内容结构分值比例试卷题型结构分析:2021年的数学考纲明显提高了对高等数学的考察要求,毕竟高等数学是大学的数学基础;同时随着考研人数年年递增,通过提高选择题和填空题的分值占比,不仅可以减轻阅卷的工作量,也可以降低解答题阅卷的随机误差。 对基础知识,基础概念,基础计算要训练好。(三基:基础不牢,地动山摇) 培养独立思考,独立解题的习惯。(尤其锻炼选择题、填空题的方法和技巧) 锻炼做题速度,考场一共就三个小时,所以在平时要控制好时间。(建议前期用150分训练,后期恢复180分钟。类似赛跑训练课绑沙袋) 善于总结,对一系列类似题目,总结出来最合适的解法。(适合自己的才是最好的方法)
考研数学二大纲2022

考研数学二大纲2022

2021考研数学大纲(1)

考研大纲数学

概率2014年考研数学 大纲 对概率部分的要求与13年相比无任何变化,延续了往年的稳定性,这点广大考生可以放心复习。关于考研数学概率部分,根据考试大纲的要求,我先总体概述一下这门学科。  概率论与数理统计很多考生认为公式、概念比较多,形式比较繁杂,尤其是数理统计部分。其实不然,这门课程的最大特点是题型比较单一,规律性较强,解题方法也是相对较固定。比如概率的两道解答题,大多集中于第三章二维随机变量及其分布、第四章数字特征、数理统计中的基本概念以及参数估计。只要考生在这些章节重点进行复习,得分应该不是特别困难。考生复习起来比较困难的地方,集中在两点,一是古典概率,那块儿的计算一不小心就数错了,或者是不知道怎么来数数,其实这个大家放心,考研只会考简单的古典概率的计算,复杂的不会考,所以这部分可以很快通过;二是数理统计部分,这部分式子比较复杂,很多人学到这里就脑袋大,其实不用担心,这部分需要你真正去记忆的很
考研数学考试大纲

考研数学考试大纲

试卷满分及考试时间试卷满分为150分,考试时间为180分钟. 答题方式答题方式为闭卷、笔试. 试卷内容结构高等教学约78% 线性代数约22% 试卷题型结构试卷题型结构为:单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学 函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:\lim _{x \rightarrow 0} \frac { \sin x}{x}=1, \lim _{x \rightarrow \infty }(1+\frac {1}{x})^{x}=e 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(LHospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式. 一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibiniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一菜布尼茨公式.5.了解反常积分的概念,会计算反常积分. 多元函数微积分学2 考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分 常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:y^{(n)}=f(x),y''=f(x,y')和y''=f(y,y').4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

考研经验分享:解读考研数学的考研大纲

考研数学大纲考研数学大纲

考研数学大纲解析「完整版」

考研数学大纲解析「完整版」

考研数学考研大纲详细解读

考研数学大纲详解(教材分析)

考研大纲数学(3篇)

考研数学大纲

考研数学大纲

数学考研大纲

勾选下载
全部下载(21篇)
搜索
下载夸克,免费领特权
下载

考研数学大纲

DOCX28.5KB 43
1/33
2/33
3/33
4/33
展开阅读剩余29页
复制