24考研数二大纲
函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性反函数、复合函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义以及它们的性质函数的左、右极限无穷小无穷大穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限(略)函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质(最大值、最小值定理和介值定理)考试要求1.理解函数的概念,会作函数符号运算并会建立简单应用问题中的函数关系式。2.了解函数的奇偶性、单调性、周期性和有界性。3.理解复合函数的概念,了解反函数及隐函数的概念。4.掌握基本初等函数的性质及图形。 一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线及其方程基本初等函数的导数导数和微分的四则运算反函数、复合函数。隐函数以及参数方程所确定的函数的微分法高阶导数的概念某些简单函数的门阶导数一阶微分形式的不变性微分在近似计算中的应用罗尔(Rolle)定理拉格朗日(LAGRANGE)中值定理柯西(Cauchy)中值定理泰勒(Taylor)定理洛必达(L'H0spiial)法则函数的极值及其求法函数增减性和函数图形凹凸性的判定函数图形的拐点及其求法渐近线描绘函数的图形函数最大值和最小值的求法及其简单应用弧微分曲率的概念及计算曲率半径方程近似解的二分法和切线法考试要求1. 一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和性质积分中值定理变上限定积分及其导数牛顿一菜布尼茨(Newton一1ibni幻公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单元理函数的积分广义积分的概念及计算定积分的近似计算法定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念。理解定积分中值定理。2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及换无积分法与分部积分法。3.会求有理函数、三角函数的有理式和简单元理函数的积分。4.理解变上限定积分作为其上限的函数及其求导定理,掌握牛顿一莱布尼茨公式5.了解广义积分的概念并会计算广义积分。 常微分方程考试内容常微分方程的概念微分方程的解、通解、初始条件和特解变量可分离的方程齐次方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的一些简单应用考试要求1.了解微分方程及其解、通解、初始条件和特解等概念。2.掌握变量可分离的方程及3.会用降阶法解下列方程:(略)4.理解二阶线性微分方程解的性质及解的结构定理。5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。6.会求自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。 行列式考试内容行列式的定义、性质及计算考试要求1.了解行列式的定义、性质。2.掌握二阶、三阶行列式的计算法,会计算简单的N阶行列式。 矩阵考试内容矩阵的概念单位矩阵、对角矩阵、三角矩阵和对称矩阵以及它们的性质矩阵的线性运算矩阵的乘法矩阵的转置逆矩阵的概念矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换矩阵等价矩阵的秩初等变换求矩阵的秩和逆矩阵的方法考试要求1.了解矩阵的概念。2.了解单位矩阵、对角矩阵、对称矩阵和三角矩阵,以及它们的性质。3.掌握矩阵的线性运算、乘法、转置,以及它们的运算规律。4.理解逆矩阵的概念,掌握逆矩阵的性质,了解矩阵可逆的充分必要条件。了解伴随矩阵的概念,会用伴随矩阵求逆矩阵。5.理解矩阵的秩的概念。6.掌握用初等变换求矩阵的秩和逆矩阵的方法。 线性方程组考试内容向量的概念。向量组的线性相关与线性无关向量组的极大线性无关组向量组的秩向量组的秩与矩阵的秩之间的关系线性方程组的克莱姆(Crammer)法则齐次线性方程组有非零解的充分必要条件、齐次方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解行初等变换求解线性方程组的方法考试要求1.了解N维向量的概念。2.了解向量组线性相关、线性无关的定义。