2022年研究生考试数学二试题及解析
2022全国硕士研究生入学统一考试(数学二)试题解析一、选择题:1~10小题,每小题5分,共50分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)当x \rightarrow 0时,α(x),β(x)是非零无穷小,给出以下四个命题,其中所有正确的是()若α(x):β(x),则\alpha _{2}(x):\beta _{2}(x)若\alpha _{2}(x):\beta _{2}(x),则\alpha(x):\beta(x)若α(x):β(x),则\alpha(x)- \beta(x)=o(\alpha(x))若\alpha(x)- \beta(x)=o(\alpha(x 则α(x):β(x)(A)(B)(C)(D)【答案】C【解析】当x \rightarrow 0时,\alpha(x):\beta(x),则\lim _{x \rightarrow 0} \frac { \alpha(x)}{ \beta(x)}=1, \lim _{x \rightarrow 0} \frac { \alpha ^{2}(x)}{ \beta _{2}(x)}= \lim _{x \rightarrow 0}[ \frac { \alpha(\lim _{x \rightarrow 0} \frac { \alpha(x)- \beta(x)}{ \alpha(x)}=0,所以\alpha(x)- \beta(x)=o(\alpha(x 故正确;当x \rightarrow0时,\alpha _{2}(x):\beta _{2}(x),则\lim _{x \rightarrow 0} \frac { \alpha _{2}(x)}{ \beta _{2}(x)}=1,则\lim _{x \rightarrow 0} \frac { \alpha(x)}{ \beta(x)}= \pm 1,当\lim _{x \rightarrow 0} \frac { \alpha(x)}{ \beta(x)}=-1时,α(x)与β(x)不是等价